See below to find publications sorted by topic area.  A list of all publications from our laboratory can be found here.

Yumerefendi H, Lerner AM, Zimmerman SP, Hahn K, Bear JE, Strahl BD, Kuhlman B: Light-induced nuclear export reveals rapid dynamics of epigenetic modifications. Nat Chem Biol 2016, doi:10.1038/nchembio.2068.

Hallett RA, Zimmerman SP, Yumerefendi H, Bear JE, Kuhlman B: Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide. ACS Synth Biol 2016, 5:53–64.

Yumerefendi H, Dickinson DJ, Wang H, Wang H, Zimmerman SP, Bear JE, Goldstein B, Goldstein B, Hahn K, Kuhlman B: Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation. PLoS ONE 2015, 10:e0128443.

Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H: Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015, 525:333–338.

Guntas G, Hallett RA, Zimmerman SP, Williams T, Yumerefendi H, Bear JE, Kuhlman B: Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. P Natl Acad Sci Usa 2015, 112:112–117.

Lungu OI, Lungu OI, Hallett RA, Hallett RA, Choi EJ, Choi EJ, Aiken MJ, Aiken MJ, Hahn KM, Kuhlman B: Designing Photoswitchable Peptides Using the AsLOV2 Domain. Chemistry & Biology 2012, 19:507–517.

Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM: A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009, 461:104–108.

Leaver-Fay A, Froning KJ, Atwell S, Aldaz H, Pustilnik A, Lu F, Huang F, Yuan R, Hassanali S, Chamberlain AK, et al.: Computationally Designed Bispecific Antibodies using Negative State Repertoires. Structure 2016, 24:641–651.

Guntas G, Lewis SM, Mulvaney KM, Cloer EW, Tripathy A, Lane TR, Major MB, Kuhlman B: Engineering a genetically encoded competitive inhibitor of the KEAP1-NRF2 interaction via structure-based design and phage display. [Internet]. Protein Eng Des Sel 2016, 29:1–9.

Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, et al.: Fab-based bispecific antibody formats with robust biophysical properties and biological activity. mAbs 2015, 7:470–482.

Lewis SM, Wu X, Pustilnik A, Sereno A, Huang F, Rick HL, Guntas G, Leaver-Fay A, Smith EM, Ho C, et al.: Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 2014, 32:191–198.

Jacobs TM, Jacobs TM, Kuhlman B: Using anchoring motifs for the computational design of protein–protein interactions. Biochm. Soc. Trans. 2013, 41:1141–1145.

Der BS, Der BS, Jha RK, Jha RK, Jha RK, Lewis SM, Lewis SM, Thompson PM, Thompson PM, Guntas G, et al.: Combined computational design of a zinc-binding site and a protein-protein interaction: One open zinc coordination site was not a robust hotspot for de novo ubiquitin binding. Proteins 2013, 81:1245–1255.

Choi EJ, Choi EJ, Jacak R, Jacak R, Kuhlman B, Kuhlman B: A structural bioinformatics approach for identifying proteins predisposed to bind linear epitopes on pre-selected target proteins. Protein Engineering, Design and Selection 2013, 26:283–289.

Stranges PB, Stranges PB, Kuhlman B: A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Science 2012, 22:74–82.

Der BS, Der BS, Edwards DR, Edwards DR, Kuhlman B: Catalysis by a De Novo Zinc-Mediated Protein Interface: Implications for Natural Enzyme Evolution and Rational Enzyme Engineering. Biochemistry 2012, 51:3933–3940.

Guntas G, Guntas G, Kuhlman B: Redesigning the NEDD8 Pathway with a Bacterial Genetic Screen for Ubiquitin-Like Molecule Transfer. Journal of Molecular Biology 2012, 418:161–166.

Renfrew PD, Renfrew PD, Choi EJ, Choi EJ, Bonneau R, Kuhlman B: Incorporation of Noncanonical Amino Acids into Rosetta and Use in Computational Protein-Peptide Interface Design. PLoS ONE 2012, 7:e32637.

Der BS, Der BS, Machius M, Machius M, Miley MJ, Miley MJ, Mills JL, Mills JL, Szyperski T, Szyperski T, et al.: Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer. J. Am. Chem. Soc. 2012, 134:375–385.

Stranges PB, Stranges PB, Machius M, Machius M, Miley MJ, Miley MJ, Tripathy A, Tripathy A, Kuhlman B, Kuhlman B: Computational design of a symmetric homodimer using  -strand assembly. Proceedings of the National Academy of Sciences 2011, 108:20562–20567.

Fleishman SJ, Fleishman SJ, Whitehead TA, Whitehead TA, Strauch E-M, Strauch E-M, Corn JE, Corn JE, Qin S, Qin S, et al.: Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology 2011, 414:289–302.

Jha RK, Jha RK, Wu YI, Wu YI, Zawistowski JS, Zawistowski JS, Macnevin C, MacNevin C, Hahn KM, Kuhlman B: Redesign of the PAK1 Autoinhibitory Domain for Enhanced Stability and Affinity in Biosensor Applications. Journal of Molecular Biology 2011, 413:513–522.

Lewis SM, Lewis SM, Kuhlman BA, Kuhlman BA: Anchored Design of Protein-Protein Interfaces. PLoS ONE 2011, 6:e20872.

Gulyani A, Vitriol E, Allen R, Wu J, Gremyachinskiy D, Lewis S, Dewar B, Graves LM, Kay BK, Kuhlman B, et al.: A biosensor generated via high-throughput screening quantifies cell edge Src dynamics. Nat Chem Biol 2011, 7:437–444.

Sammond DW, Sammond DW, Bosch DE, Bosch DE, Butterfoss GL, Purbeck C, Purbeck C, Machius M, Machius M, Siderovski DP, et al.: Computational Design of the Sequence and Structure of a Protein-Binding Peptide. J. Am. Chem. Soc. 2011, 133:4190–4192.

Bosch DE, Bosch DE, Kimple AJ, Sammond DW, Sammond DW, Muller RE, Miley MJ, Miley MJ, Machius M, Machius M, et al.: Structural Determinants of Affinity Enhancement between GoLoco Motifs and G-Protein   Subunit Mutants. J. Biol. Chem. 2011, 286:3351–3358.

Guntas G, Purbeck C, Kuhlman B: Engineering a protein-protein interface using a computationally designed library. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:19296–19301.

Jha RK, Jha RK, Leaver-Fay A, Leaver-Fay A, Yin S, Yin S, Wu Y, Wu Y, Butterfoss GL, Szyperski T, et al.: Computational Design of a PAK1 Binding Protein. Journal of Molecular Biology 2010, 400:257–270.

Salgado EN, Salgado EN, Ambroggio XI, Ambroggio XI, Brodin JD, Brodin JD, Lewis RA, Lewis RA, Kuhlman B, Kuhlman B, et al.: Metal templated design of protein interfaces. Proceedings of the National Academy of Sciences 2010, 107:1827–1832.

Sammond DW, Sammond DW, Eletr ZM, Eletr ZM, Purbeck C, Purbeck C, Kuhlman B: Computational design of second-site suppressor mutations at protein-protein interfaces. Proteins 2009, 78:1055–1065.

Sammond DW, Sammond DW, Eletr ZM, Eletr ZM, Purbeck C, Purbeck C, Kimple RJ, Kimple RJ, Siderovski DP, Siderovski DP, et al.: Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities. Journal of Molecular Biology 2007, 371:1392–1404.

Eletr ZM, Eletr ZM, Kuhlman B: Sequence Determinants of E2-E6AP Binding Affinity and Specificity. Journal of Molecular Biology 2007, 369:419–428.

Johnston CA, Lobanova ES, Shavkunov AS, Low J, Ramer JK, Blaesius R, Fredericks Z, Willard FS, Kuhlman B, Arshavsky VY, et al.: Minimal Determinants for Binding Activated Gα from the Structure of a Gα i1−Peptide Dimer †,‡. Biochemistry 2006, 45:11390–11400.

Kuhlman B, O’Neill JW, Kim DE, Zhang KYJ, Baker D: Conversion of monomeric protein L to an obligate dimer by computational protein design. Proceedings of the National Academy of Sciences 2001, 98:10687–10691.

Jacobs TM, Williams B, Williams T, Xu X, Eletsky A, Federizon JF, Szyperski T, Kuhlman B: Design of structurally distinct proteins using strategies inspired by evolution. Science 2016, 352:687–690.

Kim DN, Jacobs TM, Kuhlman B: Boosting protein stability with the computational design of β-sheet surfaces. Protein Science 2015, doi:10.1002/pro.2869.

Murphy GS, Sathyamoorthy B, Der BS, Machius MC, Pulavarti SV, Szyperski T, Kuhlman B: Computational de novo design of a four-helix bundle protein-DND_4HB. Protein Science 2014, 24:434–445.

Murphy GS, Murphy GS, Mills JL, Mills JL, Miley MJ, Miley MJ, Machius M, Machius M, Szyperski T, Szyperski T, et al.: Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core. Structure 2012, 20:1086–1096.

Nauli S, Kuhlman B, Le Trong I, Stenkamp RE, Teller D, Baker D: Crystal structures and increased stabilization of the protein G variants with switched folding pathways NuG1 and NuG2. Protein Science 2009, 11:2924–2931.

Hu X, Hu X, Wang H, Wang H, Ke H, Ke H, Kuhlman B: Computer-Based Redesign of a β Sandwich Protein Suggests that Extensive Negative Design Is Not Required for De Novo β Sheet Design. Structure 2008, 16:1799–1805.

Hu X, Hu X, Wang H, Wang H, Ke H, Ke H, Kuhlman B, Kuhlman B: High-resolution design of a protein loop. Proceedings of the National Academy of Sciences 2007, 104:17668–17673.

Dantas G, Corrent C, Corrent C, Reichow SL, Reichow SL, Havranek JJ, Havranek JJ, Eletr ZM, Eletr ZM, Isern NG, et al.: High-resolution Structural and Thermodynamic Analysis of Extreme Stabilization of Human Procarboxypeptidase by Computational Protein Design. Journal of Molecular Biology 2007, 366:1209–1221.

Dantas G, Watters AL, Lunde BM, Eletr ZM, Isern NG, Isern NG, Roseman T, Lipfert J, Doniach S, Tompa M, et al.: Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution. Journal of Molecular Biology 2006, 362:1004–1024.

Ambroggio XI, Ambroggio XI, Kuhlman B: Computational Design of a Single Amino Acid Sequence that Can Switch between Two Distinct Protein Folds. J. Am. Chem. Soc. 2006, 128:1154–1161.

Kuhlman B, Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D: Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 2003, 302:1364–1368.

Dantas G, Kuhlman B, Callender D, Callender D, Wong M, Wong M, Baker D: A Large Scale Test of Computational Protein Design: Folding and Stability of Nine Completely Redesigned Globular Proteins. Journal of Molecular Biology 2003, 332:449–460.

Kuhlman B, O’Neill JW, Kim DE, Zhang KYJ, Baker D: Accurate computer-based design of a new backbone conformation in the second turn of protein L. Journal of Molecular Biology 2002, 315:471–477.

Nauli S, Kuhlman B, Baker D: Computer-based redesign of a protein folding pathway. Nat Struct Biol 2001, 8:602–605.

Kuhlman B, Kuhlman B, Baker D: Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences 2000, 97:10383–10388.

O’Meara MJ, Leaver-Fay A, Tyka M, Stein A, Houlihan K, DiMaio F, Bradley P, Kortemme T, Baker D, Snoeyink J, et al.: A Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 11:609–622.

Jacobs TM, Yumerefendi H, Kuhlman B, Leaver-Fay A: SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Research 2015, 43:e34–e34.

Drew K, Drew K, Renfrew PD, Craven TW, Butterfoss GL, Chou F-C, Chou F-C, Lyskov S, Lyskov S, Bullock BN, et al.: Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS ONE 2013, 8:e67051.

Der BS, Der BS, Kluwe C, Kluwe C, Miklos AE, Miklos AE, Jacak R, Jacak R, Lyskov S, Lyskov S, et al.: Alternative Computational Protocols for Supercharging Protein Surfaces for Reversible Unfolding and Retention of Stability. PLoS ONE 2013, 8:e64363.

Lyskov S, Lyskov S, Chou F-C, Chou F-C, Conchúir SÓ, Conchúir SÓ, Der BS, Der BS, Drew K, Drew K, et al.: Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS ONE 2013, 8:e63906.

Leaver-Fay A, Leaver-Fay A, O’Meara MJ, O’Meara MJ, Tyka M, Tyka M, Jacak R, Jacak R, Song Y, Song Y, et al.: Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement. In Methods in Protein Design. Elsevier; 2013:109–143.

Miklos AE, Miklos AE, Kluwe C, Kluwe C, Der BS, Der BS, Pai S, Sircar A, Sircar A, Hughes RA, et al.: Structure-Based Design of Supercharged, Highly Thermoresistant Antibodies. Chemistry & Biology 2012, 19:449–455.

Jacak R, Jacak R, Leaver-Fay A, Leaver-Fay A, Kuhlman B: Computational protein design with explicit consideration of surface hydrophobic patches. Proteins 2011, 80:825–838.

Leaver-Fay A, Kuhlman B, Snoeyink J: AN ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM FOR THE SIDE CHAIN PLACEMENT PROBLEM. WORLD SCIENTIFIC; 2011:16–27.

Leaver-Fay A, Jacak R, Stranges PB, Kuhlman B: A generic program for multistate protein design. PLoS ONE 2011, 6:e20937.

Leaver-Fay A, Leaver-Fay A, Tyka M, Tyka M, Lewis SM, Lewis SM, Lange OF, Lange OF, Thompson J, Thompson J, et al.: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Meth. Enzymol. 2011, 487:545–574.

Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R: A Preliminary Survey of the Peptoid Folding Landscape. J. Am. Chem. Soc. 2009, 131:16798–16807.

Renfrew PD, Renfrew PD, Butterfoss GL, Kuhlman B: Using quantum mechanics to improve estimates of amino acid side chain rotamer energies. Proteins 2007, 71:1637–1646.

Leaver-Fay A, Butterfoss GL, Snoeyink J, Kuhlman B: Maintaining solvent accessible surface area under rotamer substitution for protein design. J. Comput. Chem. 2007, 28:1336–1341.

Liu Y, Kuhlman B: RosettaDesign server for protein design. Nucleic Acids Research 2006, 34:W235–W238.

Hu X, Hu X, Kuhlman B: Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences. Proteins 2005, 62:739–748.

Jiang L, Kuhlman B, Kortemme T, Baker D: A “solvated rotamer” approach to modeling water-mediated hydrogen bonds at protein-protein interfaces. Proteins 2005, 58:893–904.

Tsai J, Bonneau R, Morozov AV, Kuhlman B, Rohl CA, Baker D: An improved protein decoy set for testing energy functions for protein structure prediction. Proteins 2003, 53:76–87.

Gray JJ, Gray JJ, Moughon S, Moughon S, Wang C, Wang C, Schueler-Furman O, Schueler-Furman O, Kuhlman B, Rohl CA, et al.: Protein–Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations. Journal of Molecular Biology 2003, 331:281–299.

Kuhlman B, Kuhlman B, Baker D: Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences 2000, 97:10383–10388.

Harrison JS, Jacobs TM, Houlihan K, Van Doorslaer K, Kuhlman B: UbSRD: The Ubiquitin Structural Relational Database. Journal of Molecular Biology 2015, doi:10.1016/j.jmb.2015.09.011.

Sandoval D, Hill S, Ziemba A, Lewis S, Kuhlman B, Kleiger G: Ubiquitin-conjugating Enzyme Cdc34 and Ubiquitin Ligase Skp1-Cullin-F-box Ligase (SCF) Interact through Multiple Conformations. J. Biol. Chem. 2015, 290:1106–1118.

Baker R, Baker R, Lewis SM, Lewis SM, Sasaki AT, Sasaki AT, Wilkerson EM, Wilkerson EM, Locasale JW, Locasale JW, et al.: Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat Struct Mol Biol 2012, 20:46–52.

Saha A, Saha A, Lewis S, Kleiger G, Kleiger G, Kuhlman B, Deshaies RJ, Deshaies RJ: Essential Role for Ubiquitin-Ubiquitin-Conjugating Enzyme Interaction in Ubiquitin Discharge from Cdc34 to Substrate. Molecular Cell 2011, 42:75–83.

Purbeck C, Purbeck C, Eletr ZM, Eletr ZM, Kuhlman B: Kinetics of the Transfer of Ubiquitin from UbcH7 to E6AP. Biochemistry 2010, 49:1361–1363.

Kleiger G, Kleiger G, Saha A, Saha A, Lewis S, Kuhlman B, Deshaies RJ, Deshaies RJ: Rapid E2-E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates. Cell 2009, 139:957–968.

Torres MP, Lee MJ, Ding F, Purbeck C, Kuhlman B, Dokholyan NV, Dohlman HG: G Protein Mono-ubiquitination by the Rsp5 Ubiquitin Ligase. J. Biol. Chem. 2009, 284:8940–8950.

Eletr ZM, Eletr ZM, Huang DT, Huang DT, Duda DM, Duda DM, Schulman BA, Schulman BA, Kuhlman B: E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat Struct Mol Biol 2005, 12:933–934.

Der BS, Der BS, Kuhlman B: Cages from coils. Nat Biotechnol 2013, 31:809–810.

Der BS, Der BS, Kuhlman B: Strategies to control the binding mode of de novo designed protein interactions. Current Opinion in Structural Biology 2013, 23:639–646.

Der BS, Der BS, Kuhlman B: From Computational Design to a Protein That Binds. Science 2011, 332:801–802.

Ambroggio XI, Kuhlman B: Design of protein conformational switches. Current Opinion in Structural Biology 2006, 16:525–530.

Butterfoss GL, Kuhlman B: COMPUTER-BASED DESIGN OF NOVEL PROTEIN STRUCTURES. Annu. Rev. Biophys. Biomol. Struct. 2006, 35:49–65.

Kuhlman B, Baker D: Exploring folding free energy landscapes using computational protein design. Current Opinion in Structural Biology 2004, 14:89–95.

Luisi DL, Kuhlman B, Sideras K, Evans PA, Raleigh DP: Effects of varying the local propensity to form secondary structure on the stability and folding kinetics of a rapid folding mixed α/β protein: characterization of a truncation mutant of the N-terminal domain of the ribosomal protein L9. Journal of Molecular Biology 1999, 289:167–174.

Sato S, Sato S, Kuhlman B, Kuhlman B, Wu WJ, Wu W-J, Raleigh DP, Raleigh DP: Folding of the Multidomain Ribosomal Protein L9:  The Two Domains Fold Independently with Remarkably Different Rates †. Biochemistry 1999, 38:5643–5650.

Kuhlman B, Luisi DL, Young P, Raleigh DP: p KaValues and the pH Dependent Stability of the N-Terminal Domain of L9 as Probes of Electrostatic Interactions in the Denatured State. Differentiation between Local and Nonlocal Interactions †. Biochemistry 1999, 38:4896–4903.

Kuhlman B, Luisi DL, Evans PA, Raleigh DP: Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. Journal of Molecular Biology 1998, 284:1661–1670.

Kuhlman B, Kuhlman B, Raleigh DP, Raleigh DP: Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H 2O and D 2O. Determination of the thermodynamic parameters, Δ H°, Δ S°, and Δ C° p, and evaluation of solvent isotope effects. Protein Science 1998, 7:2405–2412.

Vugmeyster L, Kuhlman B, Raleigh DP: Amide proton exchange measurements as a probe of the stability and dynamics of the n-terminal domain of the ribosomal protein L9: Comparison with the intact protein. Protein Science 1998, 7:1994–1997.

Spector S, Kuhlman B, Fairman R, Wong E, Boice JA, Raleigh DP: Cooperative folding of a protein mini domain: the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex. Journal of Molecular Biology 1998, 276:479–489.

Kuhlman B, Kuhlman B, Boice JA, Boice JA, Fairman R, Fairman R, Raleigh DP, Raleigh DP: Structure and Stability of the N-Terminal Domain of the Ribosomal Protein L9:  Evidence for Rapid Two-State Folding †. Biochemistry 1998, 37:1025–1032.

Kuhlman B, Yang HY, Boice JA, Fairman R, Raleigh DP: An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. Journal of Molecular Biology 1997, 270:640–647.

Kuhlman B, Boice JA, Wu W-J, Fairman R, Raleigh DP: Calcium Binding Peptides from α-Lactalbumin:  Implications for Protein Folding and Stability †. Biochemistry 1997, 36:4607–4615.

Carter CW, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, et al.: The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 2014, 9:11.

Harrison JS, Harrison JS, Higgins CD, Higgins CD, O’Meara MJ, O’Meara MJ, Koellhoffer JF, Koellhoffer JF, Kuhlman BA, Kuhlman BA, et al.: Role of Electrostatic Repulsion in Controlling pH-Dependent Conformational Changes of Viral Fusion Proteins. Structure 2013, 21:1085–1096.

Zhang J, Zhang J, Lewis SM, Lewis SM, Kuhlman B, Lee AL, Lee AL: Supertertiary Structure of the MAGUK Core from PSD-95. Structure 2013, 21:402–413.

Gulyani A, Vitriol E, Allen R, Wu J, Gremyachinskiy D, Lewis S, Dewar B, Graves LM, Kay BK, Kuhlman B, et al.: A biosensor generated via high-throughput screening quantifies cell edge Src dynamics. Nat Chem Biol 2011, 7:437–444.

Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R: A Preliminary Survey of the Peptoid Folding Landscape. J. Am. Chem. Soc. 2009, 131:16798–16807.

Kapustina M, Weinreb V, Li L, Kuhlman B, Carter CW Jr.: A Conformational Transition State Accompanies Tryptophan Activation by B. stearothermophilus Tryptophanyl-tRNA Synthetase. Structure 2007, 15:1272–1284.

Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW Jr.: A Minimal TrpRS Catalytic Domain Supports Sense/Antisense Ancestry of Class I and II Aminoacyl-tRNA Synthetases. Molecular Cell 2007, 25:851–862.

Johnston CA, Lobanova ES, Shavkunov AS, Low J, Ramer JK, Blaesius R, Fredericks Z, Willard FS, Kuhlman B, Arshavsky VY, et al.: Minimal Determinants for Binding Activated Gα from the Structure of a Gα i1−Peptide Dimer †,‡. Biochemistry 2006, 45:11390–11400.